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TIME SERIES FORECAST OF CALL ARRIVALS USING MACHINE LEARNING METHODS 
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Abstract 

This study focuses on enhancing workforce management in the Citizen Service Request (CSR) Call Center 

dataset of the government of Cincinnati, Ohio, by improving the accuracy of call arrival forecasts. Recognizing 

the pivotal role of precise call arrival predictions in optimizing call center operations, this the study conducts 

experiments by utilizing a range of forecasting models, including statistical, machine learning, and neural network 

approaches. Feature engineering was proposed to broaden the scope of features for forecasting. The top-

performing models are evaluated based on key metrics such as Mean Absolute Error (MAE), Mean Absolute 

Percentage Error (MAPE), Root Mean Square Error (RMSE), and R-Squared (R²) forecasting performance. The 

experimental results highlighted the comparative performance of various models, such as SARIMAX, Light 

Gradient Boosting Machine (Light GBM), Gradient Boosting Regressor (GBR), eXtreme Gradient Boosting (XGBoost), 

Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU). Among 

these, Support Vector Regression (SVR) leads in accuracy with an MAE of 25.13, an MAPE of 6.15%, an RMSE of 

34.46, and an R² of 90.56%. The features of abandon rate, answer speed, service level calls, and the 1st and 

5th lags, were identified as the most importance feature in this research. These findings provide valuable insights 

for the improvement of workforce management strategies in call center operations, emphasizing the 

effectiveness of machine learning algorithms in achieving more accurate call arrival forecasts. 
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Background 

1. Introduction 

Workforce Management (WFM) is a strategic approach that organizations employ to optimize the efficiency 
and productivity of their workforce. It encompasses various key components, including workforce planning, 
scheduling, time and attendance management, task assignment, performance management, and training and 
development. Workforce planning involves forecasting future needs and identifying talent gaps, while scheduling 
ensures that the right employees, with the right skills, are in the right place at the right time. Time and attendance 
management tracks working hours and ensures compliance with labor regulations. Task assignment optimizes 
productivity by matching employees to tasks based on skills and availability. Performance management aligns 
individual performance with organizational goals, and training and development enhance workforce skills. 
Technology, such as workforce management software, plays a crucial role in automating and streamlining these 
processes. The overarching goal of Workforce Management is to create a dynamic and agile workforce that can 
adapt to changing business needs, ultimately contributing to enhanced operational performance and 
organizational success.  

 Forecasting in a call center is a critical component of effective workforce management, aiming to predict 
and plan for future customer interaction volumes. It involves a comprehensive analysis of historical data, trends, 
and various factors influencing call volumes to make accurate predictions. By examining past call patterns and 
considering external variables such as marketing initiatives or economic factors, organizations can anticipate peak 
times and plan staffing levels accordingly. Regular monitoring and adjustment are essential for ensuring that 
forecasts remain aligned with real-time data and changing conditions. Accurate forecasting contributes to 
improved customer service by minimizing wait times, reducing the likelihood of abandoned calls, and enhancing 
overall operational efficiency. 

 

2. Statistical method and Machine Learning Models 

2.1 SARIMAX 

SARIMAX, an extension of SARIMA (Box & Jenkins, 1976)  known as Seasonal AutoRegressive 

Integrated Moving Average with Exogenous Factors," allows for incorporating variables into the modeling 

process. The factors listed here are examples of exogenous variables that could have an impact on the 

time series under study. Three elements that are comparable to SARIMA make up the SARIMAX model. 

The SARIMAX model incorporates a Seasonal Component (S), acknowledging and reproducing 

recurring cycles or patterns in the time series data. It comprises AutoRegressive (AR) and Moving Average 

(MA) components, where the MA component models the relationship with residual errors, and the AR 
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component illustrates the connection with prior values. Additionally, SARIMAX introduces Exogenous 

Variables (X), external factors like holidays or advertising budget, enhancing the model's capacity to 

account for changes in the time series. 

 

2.2 Support Vector Regression (SVR) 

A machine learning technique called Support Vector Regression (SVR) was created especially 

for handling regression tasks involving complex and non-linear relationships between the target 

variable and the input features. In contrast to linear regression, support vector regression (SVR) uses 

a kernel trick to map the input features into a higher-dimensional space, which makes it possible 

to identify the best hyperplane for accurately representing the underlying relationships. 

 

2.3 Light GBM (Light Gradient Boosting Machine) 

A model called Light Gradient Boosting Machine, or Light GBM, is intended to effectively train 

big datasets. It is designed especially for gradient boosting and is a member of the learning algorithm 

family. Light GBM differs from other tree-growing methods in that it follows a leaf-based approach 

rather than a depth-first one. This method lowers the model's complexity. 

 

2.4 Gradient Boosting Regression (GBR) 

Another popular ensemble learning method for time series forecasting is gradient boosting 

regression (GBR). Usually, the process starts with establishing a prediction, which is the target variable's 

average. Then, by training them using the negative gradient of the loss functions predictions for the 

current model, the algorithm creates learners frequently using shallow decision trees. To account for 

the differences between the predicted values, residuals are computed, and the weak learners prediction 

is modified and incorporated into the current model. This process is repeated, with each weak learner 

concentrating on fixing mistakes in the previously constructed ensemble. 

 

2.5 XGBoost (eXtreme Gradient Boosting) 

When it comes to tasks like regression, classification, and even time series forecasting, XGBoost is a 

highly effective and popular machine learning algorithm. In order to produce a final prediction that is 
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both dependable and accurate, XGBoost functions as a learning technique that integrates the 

predictions from several weak models, most often decision trees. 

The secret to the algorithms' performance is their capacity to manage relationships in the data 

while retaining a high degree of predictive accuracy. Boost converts data into features that include lag 

values and pertinent external factors in the context of time series forecasting. After that, a series of 

decision trees are built, each tree repairing the mistakes made by the previous ensemble. 

 

2.6 Recurrent Neural Network (RNN) 

Artificial neural networks that process sequential data by preserving an internal state or memory 

are known as recurrent neural networks, or RNNs. In contrast to feedforward neural networks, which 

process input data in a single pass, RNNs are capable of handling sequences of arbitrary length and 

maintaining information over time. (Werbos, 1988) is regarded as the most thorough source of 

information on recurrent neural networks (RNNs). 

Nevertheless, the vanishing gradient problem presents a difficulty for conventional RNNs. This issue 

limits their capacity to accurately identify long-term dependencies. Advanced RNNs have been 

developed, such as the Gated Recurrent Unit (GRU) and Long Short Term Memory (LSTM), to get around 

this restriction. These versions overcome the limitations of RNNs and improve their ability to identify 

and leverage long-term dependencies. 

 

2.7 GRU (Gated Recurrent Unit) 

The GRU, a type of network (RNN) is widely used for tasks like predicting call arrival volume in 

sequence modeling and forecasting. It's a variant of RNN that addresses the vanishing gradient 

problem through gating techniques. An overview of the GRU model's elements is provided below: 

• Hidden State: The GRU stores data from previous time steps in a hidden state that corresponds 

to the model's memory. 

• Update Gate: The update gate controls how much old data should be. How much new 

information should be incorporated into the hidden state. 

• Reset Gate: The reset gate determines how much of the state to ignore when calculating the 

current hidden state. It allows the reset or deletion of data. 
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• Candidate Activation: At each time step the candidate activation calculates a hidden state 

by combining information from the hidden state and the current input. 

• Final Hidden State: is determined by using the update gate to blend the hidden state with 

the candidate activation. This represents updated memory or information, for that time step. 

 

2.8 LSTM (Long Short-Term Memory) 

Long-term dependencies in sequential data, like time series data, can be captured using long-

term support graph networks, or LSTMs. They are appropriate for modeling patterns because they 

have the capacity to selectively remember or forget information over extended periods of time. In 

this research paper a new type of neural network (RNN) architecture was proposed by (Hochreiter 

& Schmidhuber, 1997). This innovative architecture incorporated memory cells and gating 

mechanisms, which addressed the problem of vanishing gradients commonly encountered in RNNs. 

The elements of an LSTM network are as follows: 

• Forget gate: The forget gate controls the flow of information from the previous hidden state 

to the current hidden state. It determines which past information is still relevant and should be 

retained while filtering out data. 

• Input gate: The input gate controls how much new information is incorporated into the cell 

state from the current input. It decides which aspects of the current input are relevant and should 

be incorporated into the cell state. 

• Cell state update: To update the cell state, the cell state update combines information from 

the forget gate, input gate, and current input. The cell state is the LSTM's core memory component, 

and it maintains long-term dependencies in sequential data. 

• Output gate: At the current time step, the output gate determines which information from the 

cell state is used to produce the output. It determines how much information about the cell state 

is exposed to the network's subsequent layers. 
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Methodology 

1. Data Understanding 

(Services, 2023) contains information on Citizen Service Request (CSR) call center calls in Cincinnati, 

Ohio. The dataset includes information on the caller's type of service request, the time and date of the call, 

the location of the service request for help, and the request's status. 

There are 856,405 rows representing 23 columns from 2015 to 2022. The data is updated daily and is 

able to filter by date, location, status, and service request type. Figure 1 depicts the monthly trend to 

demonstrate the fluctuation. The dataset presents useful insights into the types of issues that Cincinnati citizens 

face, as well as the level of service offered by the CSR call center. 

 

Figure  1 Monthly call trend of the Citizen Service Request (CSR) dataset from 2014 – 2021 

From 2014 to 2022, the department's call arrivals follow a yearly pattern. Every July or Summer, the 

volume was higher than in other months. The number of calls ranged from 86 to 710, with an overall average 

of 403. Missing values are linearly interpolated in 2018. In early 2020, there was a drop trend, which could have 

been caused by a factor affecting call arrivals at the time. 
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Figure  2 Total call per day visualization 

The total calls in summer 2015, the second year of service, are highly fluctuated from the original 

values of over 1,400 calls. Outlier calls can be handled by setting minimum and maximum bounds, as well as 

zero values, which are repeated every weekend and holiday. Figure 9 depicts the results of the histogram of 

total daily calls. 

2. Data Pre-processing 

Pre-processing involved transforming raw data from 856,430 calls into a daily format. The series was refined 

by trimming both the initial and concluding segments to eliminate outliers. The resulting dataset spans from 

July 31, 2014, to October 14, 2022, covering a total of 2,135 days, with holidays excluded as depicted in Figure 

2 of the data frame. 

Daily summaries of call data are generated by calculating the total number of calls, abandoned calls, and 

answered calls, as well as the average service level. Additionally, average values for relevant metrics like answer 

speed, talk time, and wrap time are computed. Finally, abandonment and answer rates are derived from the 

respective call counts. Data for weekdays (Monday to Friday) is used for this analysis, as days with no calls 

(holidays and days off) are excluded. 

3. Feature Engineering 

This research leverages time and lag features to grant the model the power to discern the intricate 

relationships between TOTAL_CALL and other features, ultimately revealing the key factors that contribute to 

accurate prediction. These features capture the essential temporal patterns and dependencies, significantly 
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enhancing the model's grasp of the data and its predictive capabilities. The correlation of all features shows in 

Figure 3. 

• Temporal Features: DAY_OF_WEEK, MONTH_DAY, YEAR_DAY, WEEK_YEAR :  These features 

directly extracted from the 'DATE' column provide contextual information about the day of the week, month, 

year, and week of the year for each entry. 

• Seasonal Features: Binary indicators represent the seasons (FALL, SPRING, SUMMER, WINTER). 

Each feature is assigned 1 if the entry falls within the corresponding season and 0 otherwise. 

• Monthly Features: Similarly, binary features represent each month of the year (JAN, FEB, ..., 

DEC). An entry receives 1 for its respective month and 0 for other months. 

• Yearly Features: YEAR_2014, YEAR_2015, ..., YEAR_2022: features differentiate the specific year 

of each entry (YEAR_2014, YEAR_2015, ..., YEAR_2022). The feature corresponding to the entry's year is set to 1 

and others to 0. 

• Day of the Week Features: Each day of the week is represented by a binary feature (MONDAY, 

TUESDAY, ..., SUNDAY). The feature relevant to the entry's day is assigned 1 and the rest 0. 

• Lag1 to Lag5: These features capture 5 days of seasonality (Monday to Friday) and aim to learn 

any potential weekly patterns affecting call volume. 

• Lag10 to Lag30: This range of lag features (2 to 6 weeks) investigates the influence of longer-

term historical data on future call volumes. 

• TOTAL_CALL_LAG_1 to TOTAL_CALL_LAG_30: These features represent the specific lag 

observations created for 'TOTAL_CALL', providing the model with historical information at different timeframes. 
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Figure  3 Correlation of total 48 features 

4. Statistical Test 

The Augmented Dickey-Fuller (ADF) : This test investigates at the presence of a "unit root," a sign of 

non-stationarity, in a time series. Potential stationarity is suggested by a rejected null hypothesis of non-

stationarity, highlighting the significance of differencing in achieving stationarity. 

KPSS Test (Kwiatkowski-Phillips-Schmidt-Shin Test): investigates the null hypothesis of stationarity 

around a deterministic trend, building on the findings of the ADF test. This reveals possible long-term trends or 

structural fractures within the data by assisting in the determination of whether a series is stationary around a 

trend. 
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The ADF and KPSS tests complement one another. The ADF test is especially useful for determining 

the need for differencing, whereas the KPSS test is more concerned with detecting stationarity around a trend. 

Analysts can make informed decisions about appropriate transformations and modes thanks to their combined 

application. 

  

Figure  5 Augmented Dickey-Fuller test results. 

There is substantial evidence for stationarity in Figure 5, with an ADF Statistic of -4.43 and a p-value of 

0.00026. Critical values of -3.43 (1%), -2.86 (5%), and -2.57 (10%) at various significance levels further corroborate 

this. This strongly rejects the null hypothesis of non-stationarity because the p-value is extremely low and the 

ADF Statistic is substantially smaller than these critical values. 

As a result, the test's definitive result verifies that the time series is stationary. This suggests that 

stationarity was probably achieved without the need for differencing, which is important information for further 

study and modeling. By using this knowledge, models that are more precise and efficient can be created, 

improving time series data predictions, and understanding. 

 

Figure  6 KPSS test results 

The KPSS (Figure 6) test employed here yielded a statistic of approximately 0.10, a p-value of 0.1, and 

27 lags. Notably, the critical values for different significance levels indicate a range of acceptable values: 0.347 

(10%), 0.463 (5%), 0.574 (2.5%), and 0.739 (1%). 
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Given that the p-value is quite large (0.1) and the KPSS Statistic is below all of these key values, the 

null hypothesis of stationarity around a deterministic trend is not rejected. As a result, the test result supports 

the first hypothesis by confirming the stationarity of the time series. This result suggests that the time series 

shows signs of stationarity and may possibly point to an underlying trend. This important realization facilitates 

further research and model development by revealing details about the structural stability of the data and 

opening up a deeper knowledge of its long-term behavior. 

5. ACF and PACF results 

Through the examination of the ACF and PACF plots, analysts can obtain significant knowledge for 

determining the proper AR and MA orders (incorporating seasonal and non-seasonal elements) as well as 

pertinent exogenous variables that enhance the SARIMAX model's prediction ability. 

 
Figure 7 ACF and PACF of original data 

Figure 7 reveals crucial information about the underlying patterns and trends within our time series 

data. Notably, the ACF and PACF plots exhibit a "long memory" effect, meaning the autocorrelation values at 

successive lags decay slower than expected for a purely random process. This suggests that first-order 

differencing is necessary to remove the trend-related structures and achieve stationarity. Furthermore, the 

presence of prominent spikes at every fifth lag in both the ACF and PACF plots signifies a clear seasonal pattern 

with an order of 5. Identifying this periodicity is crucial for selecting suitable parameters in time series models, 

particularly SARIMA. This valuable insight sheds light on the data's temporal characteristics, paving the way for 

future modeling and analysis efforts to be tailored accordingly. 
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Figure 8 ACF and PACF of 1st differenced data 

Following the application of first-order differencing and a seasonal difference of order 5, the ACF and 

PACF plots in Figure 8 offer further insights into potential model parameters. The ACF plot specifically reveals 

autocorrelation potentially present at the first or second lag. This suggests that AR(1, 2, or 4) and MA(1, 2, or 4) 

models might be appropriate choices for further investigation. 

6. Machine Learning 

In our machine learning (ML) workflow (Figure 9), we follow a systematic approach to ensure 

robust and accurate analysis. 

• Normalize or Standardize: Ensure all data shares the same scale for consistent analysis. 

• Leverage Time Series Generator: Utilize a dedicated time series generator tool to efficiently 

split the data into training (70%) and testing (30%) sets. 

• Employ the 30% testing set to train and modify the data for further analysis across different 

algorithms. 

• Time Series Cross-Validation: Implement time series cross-validation with three folds (n_splits 

= 3) to assess model performance on various data splits. 

• Performance Evaluation: Utilize diverse metrics such as MAE, RMSE, MAPE, R² to thoroughly 

evaluate the performance of different models. 
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• Continuous Improvement: Iterate through feature engineering and hyperparameter tuning to 

optimize model performance and uncover better options. 

 

 

Figure  9 The data flow diagram of the experiment. 

7. Error Metrics 

In order to assess the accuracy of forecasting models, error metrics are necessary. These metrics quantify 

the variation between the expected and actual values in a time series. In time series analysis, a model's accuracy 

is determined by how well it can uncover hidden patterns and trends within the data. Several error metrics are 

used to assess a forecasting model's performance. Among the most often used error metrics are mean absolute 

error (MAPE), mean squared error (MSE), root mean square error (RMSE), and mean absolute percentage error 

(MAPE). 

N represents the total amount of value in the time series, 

Ai represents the actual value at time i, 
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Fi represents the forecasted value at time i, 

Σ is represents the total of the squared discrepancies between the actual and anticipated values, and 

| i=1 to N | denotes the summation over all values of i from 1 to N. 

7.1 Mean Absolute Error (MAE) 

One popular error metric used in time series forecasting is mean absolute error (MAE). the time 

series' average absolute difference between the values of the forecast (Fi)  and actual (Ai)  values. Divide 

the total number of samples (N) by the absolute differences for each time point to get the MAE. The 

average size of the model's prediction error is measured by the MAE, which is expressed in the same 

units as the time series data. In general, a model with a lower MAE value is more dependable, whereas 

a larger MAE number indicates less accuracy. 

𝑀𝐴𝐸 =
1

𝑁
∑ | 𝐴𝑖 − 𝐹𝑖  |

𝑁

𝑖=1
 

 

7.2 Root Mean Squared Error (RMSE) 

In time series forecasting, another commonly used error metric is the Root Mean Squared Error 

(RMSE). This equation represents a square root of the average of the squared differences between the 

anticipated (Fi)  and actual (Ai) values. To compute RMSE, you square the difference for each time 

point, sum up these squared differences, take the average, and then calculate the square root of that 

average. Larger errors are penalized more than smaller errors by the RMSE since the differences are 

squared. The Root Mean Squared Error (RMSE) can be computed using the formula below: 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑𝑖=1

𝑁 (𝐴𝑖 − 𝐹𝑖)2 

 

7.3 Mean Absolute Percentage Error (MAPE) 

In time series forecasting, mean absolute percentage error (MAPE) is another popular error 

metric. The average percentage difference in a time series between anticipated (Fi)  and actual (Ai) 
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values. To compute MAPE, you calculate the absolute percentage difference for each time point, sum 

up these absolute percentage differences, and then divide by the total number of samples (N). The 

final value is expressed as a percentage by multiplying it by 100. A useful metric for comparing 

forecasting model performance across different time series, particularly when the actual values' 

magnitudes differ significantly, is the mean absolute percentage error (MAPE) of the model. This formula 

can be used to determine MAPE: 

𝑀𝐴𝑃𝐸 =  
100

𝑁
∑ |

𝐴𝑖 − 𝐹𝑖

𝐴𝑖
|

𝑁

𝑖=1
 

 

Note that the MAPE is less appropriate for time series with large seasonal changes or outliers since 

it tends to overstate large errors and can produce endless or undefined results when the actual values 

are zero. 

7.4 R-squared 

The coefficient of determination, also known as R-squared (R2), expresses how closely the 

forecasts made by the model match the actual values. The following formula is used to calculate it: 

𝑅2 = 1 − 
∑ (𝐴𝑖 − 𝐹𝑖)2𝑁

𝑖=1

∑ (𝐴𝑖 − 𝐴)2𝑁
𝑖=1

 

 

Where �̅�  denotes the average of the actual values. R²  is a number between 0 and 1, with 0 

indicating that the model explains no data variability and 1 indicating that it fits perfectly. It indicates 

how well the independent variable predicts the dependent variable's variance, with greater values 

suggesting greater model efficiency. 

Experimental Results 

The metrics of all models are summarized in Table 1. Among the correlated features, the SVR 

algorithm performed the best in terms of MAE with a value of 26.2, MAPE with a value of 6.34%, RMSE 

with a value of 36.6, and a high R² with a value of 89.40%. Other algorithms, such as LightGBM, GBR, and 
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XGBoost, also performed well. However, as compared to traditional machine learning techniques, 

recurrent neural network models such as Simple RNN, GRU, and LSTM produced larger mistakes and 

lower R² values. 

Analyzing the full dataset, SVR emerged as the best-performing algorithm across all measures, 

with the lowest MAE (39.87), MAPE (10.22%), and RMSE (52.09), as well as a high R² of 78.85%. LightGBM, 

GBR, and XGBoost also performed well, in line with the linked feature group. Notably, recurrent neural 

network models struggled to capture patterns over the entire dataset, with significantly larger errors and 

lower R² values than other approaches. 

In the selected feature group, SVR continued to outperform other algorithms (Figure 10), 

achieving the lowest MAE (25.13), MAPE (6.15%), and RMSE (34.66), along with the highest R² (90.56%). 

LightGBM, GBR, and XGBoost also demonstrated competitive results, reaffirming their effectiveness with 

selected features. Notably, the performance of recurrent neural network models improved in this feature 

group, with reduced errors compared to the full dataset, although SVR remained superior in overall 

predictive accuracy. 

 

Figure  10  Train and Test Actual vs Prediction plot of Selected Features in SVR 

Across all feature groups, SVR consistently stood out as the top-performing algorithm, 

demonstrating robust predictive capabilities. LightGBM, GBR, and XGBoost also proved effective in 

capturing patterns in the data, especially when specific features were selected. On the other hand, 
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recurrent neural network models, including Simple RNN, GRU, and LSTM, exhibited higher errors and 

lower R² values, indicating challenges in capturing the underlying patterns in the given data. These 

findings highlight the importance of algorithm selection and feature engineering in optimizing time series 

forecasting models. 

Table 1 Summary metrics by model in 3 feature group 

Group Feature ML Algorithms MAE MAPE RMSE R² 

Correlated Feature 

SARIMAX 32.11 8.31% 41.91 84.57% 

SVR 26.2 6.34% 36.6 89.40% 

LightGBM 30.73 7.73% 42.52 84.92% 

GBR 29.19 7.32% 39.89 86.62% 

XGBoost 30.53 7.79% 41.72 85.26% 

Simple RNN 58.92 15.75% 78.72 50.70% 

GRU 64.34 16.84% 84.89 43.44% 

LSTM 61.41 18.18% 90.58 57.76% 

Full dataset 

SARIMAX 57.73 15.69% 68.8 54.81% 

SVR 39.87 10.22% 52.09 78.85% 

LightGBM 31.07 7.91% 42.66 84.77% 

GBR 29.35 7.45% 39.93 86.65% 

XGBoost 31.16 7.98% 42.86 84.49% 

Simple RNN 83.22 21.40% 104.98 13.02% 

GRU 60.49 15.66% 81.53 48.17% 

LSTM 62.99 17.57% 87.69 60.35% 

Selected Feature 

SARIMAX 33.21 8.73% 43.03 84.01% 

SVR 25.13 6.15% 34.66 90.56% 

LightGBM 30.95 7.81% 42.25 84.95% 

GBR 28.77 7.18% 39.24 87.04% 

XGBoost 30.51 7.73% 41.72 85.12% 

Simple RNN 59.3 15.79% 80.00 49.25% 

GRU 58.88 15.83% 79.00 50.52% 

LSTM 54.53 15.20% 78.48 68.31% 
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Figure  11 XGBoost Feature Importance (Full dataset) 
 

Conclusion 

The present study highlights the critical function of Workforce Management (WFM) in enhancing 

the efficacy of contact centers. It highlights the significance of optimizing call volume forecasting and 

agent scheduling procedures to achieve cost savings and operational efficiency. The experiment 

investigated the efficacy of sophisticated time series models, such as SARIMAX, SVR, Gradient Boosting, 

RNN, GRU, and LSTM, in forecasting contact volume, a crucial component of a successful WFM 

implementation. With the lowest Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), Mean 

Absolute Percentage Error (MAPE), and greatest R² values, SVR and GBR stood out as the best-performing 

models. The study used careful metrics translation, normalization, and data pretreatment to improve 

model performance by feature engineering and hyperparameter optimization. 
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Discussion 

To systematically categorize data and investigate their impact on predictive model efficacy, the study 

adopts three unique feature groups—Full Dataset, Correlated Feature group, and Selected Feature group. 

Notably, the SARIMAX model demonstrates competitive performance with a concentrated selection of only five 

features, demonstrating the efficacy of focused feature selection over a more extensive method. SVR emerges 

as the best-performing model, excelling particularly with features derived from XGBoost's top important features, 

highlighting the importance of feature engineering in optimizing SVR's performance. Gradient Boosting models 

provide consistent top contributors, with differences in feature relevance among models such as LightGBM 

highlighting the intricacies of model-specific preferences. While RNNs perform poorly across the full dataset, 

GRU and LSTM perform similarly across feature sets, highlighting the necessity of careful feature selection to 

avoid overfitting and improve generalization. The fifth lag element, which captures patterns across a 5-day 

period, is critical for forecasting, especially on working days. Key measures such as abandoned rate, answer 

speed, and service level call are more than just process features (Figure 11); they are invaluable indicators of 

caller behavior, system performance, and operational efficiency. Recognizing the significance of these traits 

allows organizations to better prepare for swings in call volume, improving overall service quality and customer 

happiness. 

Limitation 

This study provides valuable insights into call volume forecasting, suggesting potential areas for 

further refinement and exploration. The inclusion of hourly data and additional features, such as top 

contact reasons, locations, and contact channels, could enhance the granularity of temporal patterns 

and improve the understanding of factors influencing the time series. Leveraging domain expertise within 

the company is recommended for better interpretability and contextual relevance in feature engineering 

and model selection. The study's scope could be broadened by examining a wider array of models and 

datasets to gain a more comprehensive understanding of the model's applicability across different 

contexts. Experimentation with various models may reveal alternative strategies that could outperform 

or complement existing models in specific situations. 
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