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Abstract 

Forecasting demand for agricultural commodities is essential for optimizing production, managing 
inventory, staying competitive, mitigating risks, and informing policy decisions. This research study focuses on 
evaluating and comparing the performance of various forecasting models in this context. Five models were 
analyzed: Prophet, Multilayer Perceptron (MLP), Autoregressive Integrated Moving Average (ARIMA), Exponential 
Smoothing, and Time Series Mixer (TSMixer). Evaluation metrics such as Root Mean Squared Error (RMSE), Mean 
Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE) were utilized to assess the performance of 
each model. The findings revealed that the MLP model exhibited the highest forecasting performance, with the 
lowest RMSE of 5.01, MAE of 3.12, and a MAPE of only 0.0083, indicating high accuracy and low error. This study 
underscores the potential of neural network techniques in forecasting complex data and suggests avenues for 
further research and model development. By enhancing the understanding and utilization of forecasting models, 
this research contributes to the efficiency and sustainability of the agricultural industry and other related sectors. 
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1. Introduction 

Agricultural soft commodities such as coffee, sugar, cocoa, and cotton are seasonal and climate-
dependent crops. These commodities significantly impact the global economy and the livelihoods of millions 
of farmers and traders. Forecasting the demand for soft commodities is a challenging task that requires 
considering various factors, including weather patterns, consumer preferences, and geopolitical events. Taking 
sugar as an example, the current weakening of the U.S. dollar has supported the prices of various commodities, 
including sugar. Additionally, increased sugar production in Brazil has put pressure on sugar prices, while India's 
sugar supply is expected to decrease after the Indian Food Minister requested sugar exporters to limit exports 
to 6 million tons by May 2023. Consequently, global demand for raw sugar is projected to increase in the latter 
half of 2023, as countries like China and Indonesia cannot further delay sugar imports. 

Thus, changes in sugar prices reflect fluctuations in global market conditions and domestic conditions 
in sugar-exporting countries, including exchange rate variations, production changes, and demand shifts. In 2023, 
global sugar demand is forecasted to reach 180.05 million tons, while India's sugar production is estimated at 
around 36 million tons, and Brazil's sugar output is projected to be approximately 42.6 million tons. Therefore, 
the global sugar market in 2023 will depend on the demand and supply dynamics in major sugar-exporting 
countries. 

Traditional forecasting methods rely on historical data and statistical assumptions to capture demand 
patterns. However, these methods have several limitations, such as the need for manual parameter tuning, 
difficulties in handling non-stationary data [1], and the inability to incorporate external variables. Furthermore, 
these methods may not capture the complex relationships present in agricultural commodity markets. 
Conventional techniques for forecasting agricultural commodity demand, such as Autoregressive Integrated 
Moving Average (ARIMA), Exponential Smoothing, and Prophet, have limitations in handling complex and 
uncertain data and often require prior knowledge about the data and relationships between relevant variables. 
In contrast, neural network, and deep learning techniques like Multilayer Perceptron (MLP) and Time Series 
Mixer (TSMixer) can learn from large datasets and automatically extract relevant features without prior 
knowledge or human intervention, potentially better capturing the complexity and uncertainty of the data. 

The main research question is whether neural network and deep learning techniques like MLP and 
TSMixer outperform traditional methods such as Prophet, ARIMA, and Exponential Smoothing in forecasting the 
demand for agricultural soft commodity time series data. To address this question, the researcher will compare 
the performance of these methods on agricultural commodity datasets and evaluate them using appropriate 
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metrics such as Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage 
Error (MAPE). Additionally, trade-offs between these methods, such as computational time and forecasting 
accuracy, will be considered. 

2. Materials and Methods 

This section describes the datasets, forecasting techniques, and evaluation metrics employed to 
compare the performance of deep learning methods against traditional methods for forecasting the demand for 
agricultural soft commodities. 

2.1 Datasets 

The study utilizes time series data for various agricultural soft commodities, such as coffee, sugar, 
cocoa, and cotton. The datasets contain historical information on commodity prices, trading volumes, and 
relevant market indicators.  

2.2 Traditional Forecasting Methods 

Autoregressive Integrated Moving Average (ARIMA) 

Autoregressive Integrated Moving Average (ARIMA) is a statistical model commonly used for time series 
forecasting. It combines autoregression (AR), differencing (I), and moving average (MA) components to capture 
different aspects of the time series data. The autoregressive component models the relationship between an 
observation and a number of lagged observations. The differencing component removes trends and seasonality 
from the data by taking differences between consecutive observations. The moving average component models 
the relationship between an observation and a residual error from a moving average model applied to lagged 
observations. ARIMA models are typically identified by three parameters: p, d, and q, which represent the 
number of autoregressive terms, the degree of differencing, and the number of moving average terms, 
respectively. ARIMA models are widely used in various fields, including economics, finance, and meteorology, 
for forecasting time series data.  

𝒀(𝒕)  =  𝒂𝟎 +  𝜷𝟏𝒀(𝒕 − 𝟏) +  𝜷𝟐𝒀(𝒕 − 𝟐) + . . . + 𝜷𝒑𝒀(𝒕 − 𝒑)  +  𝒃𝟏𝒆(𝒕 − 𝟏) +  𝒃𝟐𝒆(𝒕
− 𝟐) + . . . + 𝒃𝒎𝒆(𝒕 − 𝒎) 

Where: 

Y(t) is the data in the time series at time t. 

a0 is a constant value. 



2024 4th Proceeding of the Data Science Conference 
 

MSDS CS SWU @2024   229 
 

β1, β2, ..., βp are the AR parameters. 

b1, b2, ..., bm are the MA parameters. 

e(t) is the error of the model at time t. 

 

Exponential Smoothing 

Exponential Smoothing is a simple and widely used method for time series forecasting. It works by 
calculating a weighted average of past observations, with more recent observations being given higher weights. 
The weights decay exponentially as observations become older, resulting in a smoother forecast that places 
greater emphasis on recent data. Exponential Smoothing is particularly useful for forecasting time series data 
with no clear trends or seasonal patterns. It is easy to implement and requires minimal computational resources, 
making it suitable for applications where computational efficiency is important. Exponential Smoothing models 
are commonly used in industries such as inventory management, sales forecasting, and capacity planning. 

𝐹(𝑡)  =  𝛼𝑌(𝑡 − 1) + (1 − 𝛼)𝛽𝐹(𝑡 − 1) 
 

Where: 

F(t) is the forecast value at time t. 

α is the parameter of the model. 

β is the leveling parameter. 

Y(t-1) is the data in the time series at time t-1. 

F(t-1) is the forecast value at time t-1. 

Prophet 

Prophet is a time series forecasting model developed by Facebook that is specifically designed to 
handle datasets with seasonal patterns, holidays, and other recurring events. It is a flexible and customizable 
model that can automatically detect and incorporate such patterns into its forecasts. Prophet employs a 
decomposable time series model consisting of trend, seasonality, and holiday components. The trend 
component captures non-periodic changes in the data, while the seasonality component captures periodic 
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fluctuations. The holiday component allows the model to account for the effects of holidays and other special 
events on the time series data. Prophet is particularly useful for forecasting time series data with complex 
patterns and is widely used in various domains such as retail sales forecasting, financial forecasting, and demand 
forecasting. 

𝑌(𝑡)  =  𝑔(𝑡)  +  𝛽𝑠(𝑡)  +  𝑒(𝑡) 

Where: 

Y(t) is the data in the time series at time t. 

g(t) is the trend component. 

βs(t) is the seasonal component. 

e(t) is the error of the model at time t 

2.3 Neural Networks 

Multilayer Perceptron (MLP) 

Multilayer Perceptron (MLP) is a type of artificial neural network (ANN) that consists of multiple layers 
of interconnected neurons. It is a feedforward neural network, meaning that information flows in one direction, 
from the input layer through the hidden layers to the output layer. MLP is trained using the backpropagation 
algorithm, which adjusts the weights of connections between neurons to minimize prediction errors. MLP is 
known for its ability to capture complex patterns and nonlinear relationships in data, making it suitable for a 
wide range of tasks, including time series forecasting. In time series forecasting, MLP can learn from historical 
data to make predictions about future values. It is particularly effective when the relationship between input 
and output variables is nonlinear or when the data has complex patterns that cannot be captured by traditional 
statistical models. 
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Figure 1. Multilayer Perceptron (MLP 

Source: https://aiml.com/what-is-a-multilayer-perceptron-mlp/ 

2.4 Deep Learning Methods 

Time Series Mixer (TSMixer) 

Time Series Mixer (TSMixer) is a relatively new approach to time series forecasting that combines 
temporal and static convolutional networks. TSMixer aims to leverage the strengths of both types of networks 
to improve forecasting accuracy. The temporal convolutional network processes the temporal aspect of the 
data, capturing sequential patterns and dependencies over time. The static convolutional network processes 
static features that do not change over time, such as categorical variables or external factors. By combining 
these two networks, TSMixer can effectively model both temporal and static aspects of the data, leading to 
more accurate forecasts. TSMixer is still an area of active research, and its performance may vary depending on 
the specific characteristics of the time series data and the chosen network architecture. 

 

Figure 2. Time Series Mixer (TSMixer) 

Source: https://blog.research.google/2023/09/tsmixer-all-mlp-architecture-for-time.html 

2.4 Data Preprocessing 

Before applying the forecasting methods, the datasets will undergo necessary preprocessing steps, 
such as handling missing values, data normalization, and feature engineering. Techniques like sliding window or 
sequence generation will be used to prepare the time series data for deep learning models. 

2.4.1 Data Exploration and Analysis (Exploratory Data Analysis) 

The EDA section delves into the exploration and analysis of the dataset. This involves techniques such 
as data visualization, summary statistics, and identifying patterns or trends within the data. 
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a. Initial Data Check 

As the data used in this research is time series data, the researcher performed an initial check of the 
data types for each column and converted the date column to an index. This step facilitates the analysis of 
time series data in the subsequent stages. By efficiently handling the time series data, the researcher can 
effectively utilize the available time for data analysis. 

b. Exploratory Data Analysis (EDA) 

Through the Exploratory Data Analysis (EDA), the researcher uncovered several noteworthy findings. 
First, a histogram was created for the 'volume' column, an effective tool for visualizing data distribution. This 
allowed the researcher to observe the distribution pattern, frequency, and volatility of the trading volume data, 
revealing an irregular distribution. Next, a bar plot was generated for the 'commodity' column, enabling the 
visualization of the categorical distribution of data and facilitating comparisons of observation counts across 
different commodity groups. Furthermore, the researcher plotted the distributions of the 'open', 'high', 'low', and 
'close' variables for each commodity type. These distribution plots provided insights into the market price 
distributions for individual commodities and allowed for comparisons of price distributions across different 
commodities. 

Finally, time series plots were created for the 'volume' variable, segregated by commodity type. These 
plots helped identify patterns in the daily changes of trading volumes and enabled comparisons of volume 
fluctuations among different commodities. This exploratory data analysis helped the researcher gain a deeper 
understanding of the data and its underlying relationships, which will be beneficial for preparing the data for 
further analysis. The next step will be to conduct the Augmented Dickey-Fuller (ADF) test on the selected 
commodity time series data. The ADF test will assist the researcher in determining whether the time series data 
is stationary or not, a crucial step in preparing the data for forecasting using machine learning techniques. 
Knowing the stationarity of the data will enable the researcher to select appropriate models for efficient 
forecasting. 

c. Augmented Dickey-Fuller (ADF Test) for Commodity Data 

The Augmented Dickey-Fuller (ADF) Test is a statistical test used to check if a given time series data is 
stationary or non-stationary. It tests the null hypothesis of a unit root in the time series. A p-value less than 0.05 
indicates that the data is stationary. For the commodity dataset used in this research, the ADF test gave a p-
value of 0.15, which is greater than 0.05. This means the null hypothesis is failed to the 5% significance level. 
In other words, the data does not exhibit strong evidence of stationarity and is likely non-stationary. 
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Additionally, the ADF test statistic value is around -2.35. This statistic is used to determine the 
stationarity of a time series. The more negative this value is, the stronger the evidence against the null hypothesis 
of non-stationarity. Typically, a more negative ADF statistic indicates stationarity. 

Given the relatively high p-value and not very negative test statistic value obtained here, the 
researcher may need to consider applying differencing techniques or other pre-processing steps to make this 
commodity data stationary before using it for forecasting purposes. 

Random Length Lumber dataset, which has been processed on Google Colab for this research, the 
following plots are generated to illustrate the analysis and findings. 

 

Figure 3. Time Series Plot of Close Prices Over Time Before Differencing 

 

Figure 4. Time Series Plot of Close Prices Over Time After Differencing 
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The Augmented Dickey-Fuller (ADF) test results suggest the raw commodity data likely violates the 
stationarity assumption required for many traditional time series forecasting methods like Autoregressive 
Integrated Moving Average (ARIMA). Appropriate data transformations may be required before building 
forecasting models. 

2.5 Model Training and Evaluation 

The traditional and deep learning forecasting models will be trained on the preprocessed datasets 
using appropriate techniques, such as backpropagation and gradient descent optimization for the deep learning 
models, and maximum likelihood estimation or least squares estimation for the traditional methods. The models 
will be evaluated using the following metrics: 

a) Root Mean Squared Error (RMSE) 

The Root Mean Squared Error (RMSE) is a metric used to assess the accuracy of a predictive model. It 
is calculated by taking the square root of the mean squared error, which is the average of the squared differences 
between predicted and actual values. RMSE measures the model's accuracy by considering the magnitude of 
all errors that occur, regardless of their direction (positive or negative). A lower RMSE value indicates higher 
model accuracy. 

𝑅𝑀𝑆𝐸 =
√∑ (𝒏

𝒊=𝟏 ŷ𝒊 − 𝒚𝒊)
𝟐

𝒏
 

 
Where: 
y = true value  

ŷ = predicted value  
n = number of data points 

 
b) Mean Absolute Error (MAE) 

The Mean Absolute Error (MAE) measures the average absolute difference between the predicted and 
actual values. It is calculated as the sum of the absolute errors divided by the number of data points. In other 
words, MAE quantifies the size of the errors without considering their direction. A high MAE indicates low model 
efficiency. 
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𝑀𝐴𝐸 =  ∑(

𝒏

𝒊=𝟏

ŷ𝒊 − 𝒚𝒊)
𝒏

 

Where: 
n = number of samples 

ŷ = predicted value  
y = true value 

 

c) Mean Absolute Percentage Error (MAPE) 

The Mean Absolute Percentage Error (MAPE) is another metric used to evaluate the accuracy of a 
predictive model. It is calculated by taking the average of the absolute percentage errors, where each error is 
expressed as a percentage of the actual value. MAPE measures the model's accuracy by considering the relative 
size of all errors that occur, regardless of their direction. Like RMSE, a lower MAPE value indicates higher model 
accuracy. 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|𝐴𝑡−𝐹𝑡|

𝐴𝑡

𝑛

𝑡=1

 

 

Where: 
n: number of iterations for the summation calculation  
At: actual value  
Ft: forecast value 

 
Evaluating forecasting models using multiple metrics like MAE, RMSE, and MAPE provides a 

comprehensive understanding of the model's performance. These metrics capture different aspects of the errors, 
such as the average magnitude (MAE), the sensitivity to large errors (RMSE), and the relative size of errors (MAPE). 
By considering these metrics together, researchers can make informed decisions about the suitability and 
effectiveness of different forecasting models for their specific applications. 

2.6 Comparative Analysis 

The performance of the neural network methods (MLP and TSMixer) was compared against the 
traditional forecasting methods (Prophet, ARIMA, and Exponential Smoothing) using the evaluation metrics 
mentioned above. Statistical tests, such as hypothesis testing or analysis of variance (ANOVA), were employed 
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to determine the significance of the performance differences. Additionally, trade-offs between the methods, 
such as computational time and forecasting accuracy, were analyzed. 

Through this systematic approach, the research aims to provide insights into the effectiveness of deep 
learning techniques like MLP and TSMixer for forecasting the demand for agricultural soft commodities compared 
to traditional methods such as Prophet, ARIMA, and Exponential Smoothing. 

Bottom of Form 

3. Results and Discussion 

The research aimed to compare the forecasting performance of various models, including Facebook 
Prophet, Multilayer Perceptron (MLP), Autoregressive Integrated Moving Average (ARIMA), Exponential Smoothing, 
and Time Series Mixer (TSMixer), in predicting commodity demand. Here are the key findings and discussions: 

Multilayer Perceptron (MLP): The MLP model demonstrated exceptional forecasting performance, 
achieving the lowest error values across all evaluation metrics (RMSE, MAE, and MAPE). Its ability to capture 
complex patterns in commodity demand data effectively contributed to its superior accuracy. The neural 
network architecture of MLP allowed it to model intricate nonlinear relationships, outperforming traditional 
methods. 

ARIMA and Exponential Smoothing: These traditional time series forecasting methods showed 
competitive performance, although with slightly higher error values compared to MLP. They effectively captured 
linear patterns and trends in the data, making them viable options in certain scenarios. 

Prophet: The Prophet model, designed for time series forecasting, displayed the poorest performance 
among the evaluated techniques. Its high error values across all metrics suggest limitations in effectively 
capturing the underlying patterns and seasonality present in commodity demand data. 

Time Series Mixer (TSMixer): TSMixer, which combines temporal and static convolutional networks, 
showed promising potential with low RMSE and MAE values. However, its infinite MAPE value indicates issues in 
accurately forecasting certain values, potentially due to its inability to handle outliers or special events in the 
data effectively. Further investigation and refinement may be required to enhance its forecasting capabilities. 

The evaluation of forecasting models using the commodity demand dataset revealed significant 

performance differences across various techniques. The Multilayer Perceptron (MLP) model emerged as the 

clear frontrunner, demonstrating superior accuracy and minimal forecasting errors compared to other models. 
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Specifically, the MLP achieved the lowest error values across all evaluation metrics, with an RMSE of 5.01, MAE 

of 3.12, and an exceptionally low MAPE of 0.0083. These results underscore the MLP's exceptional ability to 

capture complex, nonlinear patterns in commodity demand data, outperforming traditional time series 

forecasting methods. 

Importantly, these findings underscore the importance of selecting appropriate forecasting techniques 

for accurate demand forecasting, as inaccurate estimations can lead to inventory management and production 

planning issues, directly impacting organizational operations and decision-making. Overall, the results 

demonstrate the superiority of deep learning methods, particularly the MLP model, in capturing complex 

patterns and delivering accurate forecasts for commodity demand. While traditional methods like ARIMA and 

Exponential Smoothing can still be useful in certain scenarios, they may struggle to match the performance of 

advanced deep learning techniques. 

It is essential to consider the trade-offs between model complexity, training time, and data 
requirements when selecting a forecasting method. Deep learning models, while highly accurate, often require 
significant computational resources and larger datasets for training. In contrast, traditional methods may be more 
computationally efficient but less accurate in capturing nonlinear patterns. 

Future research could explore ensemble methods that combine the strengths of traditional and deep 
learning techniques, as well as investigate the potential of transfer learning and domain adaptation for 
commodity demand forecasting. Additionally, incorporating exogenous variables, such as market conditions and 
economic indicators, may further enhance the forecasting accuracy of these models. 

 

 

 

Comparison of Model Results: 

Model RMSE MAE MAPE 

Prophet 280.91 219.03 38.11 

MLP (Multilayer Perceptron) 5.01 3.12 0.0083 

ARIMA (Autoregressive Integrated Moving Average) 116.41 66.9 136.04 
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Exponential Smoothing 114.23 65.61 182.83 

TSMixer 0.8398 0.7055 inf 
 

The TSMixer model also exhibited promising performance, attaining the lowest RMSE of 0.8398 and 
MAE of 0.7055 among all models evaluated. However, its MAPE value was infinite, indicating potential issues in 
accurately forecasting certain values. This limitation could be attributed to the model's inability to effectively 
handle outliers or special events present in the data, warranting further investigation and refinement of the 
TSMixer approach. 

The ARIMA (Autoregressive Integrated Moving Average) and Exponential Smoothing models 
demonstrated competitive forecasting capabilities, with comparable RMSE and MAE values. Nonetheless, their 
MAPE values were substantially higher than the MLP model, suggesting higher percentage errors in their forecasts. 
While these traditional time series techniques effectively captured linear patterns and trends, they may struggle 
to match the performance of advanced deep learning methods in modeling intricate nonlinear relationships. 

In contrast, the Prophet model, an additive regression model designed for time series forecasting, 
exhibited the poorest performance among the evaluated techniques. Its high error values across all metrics 
(RMSE: 280.91, MAE: 219.03, MAPE: 38.11) indicate significant limitations in effectively capturing the underlying 
patterns and seasonality present in the commodity demand data. 

It is crucial to note that these findings are specific to the dataset and evaluation criteria employed in 
this study. The selection of an appropriate forecasting model may depend on various factors, including the 
nature of the data, computational resources available, and the specific requirements of the forecasting task at 
hand. 

4. Research Summary 

The research compared the forecasting performance of Prophet, Multilayer Perceptron (MLP), 

Autoregressive Integrated Moving Average (ARIMA), Exponential Smoothing, and Time Series Mixer (TSMixer) 

models in predicting commodity demand. Evaluation metrics such as Root Mean Squared Error (RMSE), Mean 

Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE) were used. The results indicated that the 

Multilayer Perceptron (MLP) model outperformed others, achieving an RMSE of 5.01, MAE of 3.12, and 

remarkably low MAPE of 0.0083, demonstrating high accuracy and minimal errors. This comprehensive 

assessment highlighted MLP's superiority in forecasting commodity demand over Prophet, ARIMA, Exponential 
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Smoothing, and TSMixer models. The study's implications for businesses and decision-makers are significant, 

emphasizing the potential for enhanced accuracy and reliability in demand prediction through MLP. Its ability 

to minimize forecasting errors enables better decision-making in inventory management, production planning, 

and resource allocation. Adopting advanced forecasting models like MLP can lead to improved operational 

efficiency, cost reduction, and increased competitiveness in volatile markets. Moreover, the research 

underscores the importance of innovative methodologies in demand forecasting, facilitating continuous 

improvement and optimization of business processes. Embracing these insights empowers organizations to 

navigate market dynamics effectively, capitalize on emerging opportunities, and achieve sustainable growth in 

today's dynamic business landscape. 

Top of Form 
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